www.sbc-support.com # PCD1.B1010-A20 # E-Line RIO 24DI, 10Rel Starting with FW 1.08.xx The L-Serie E-Line RIO modules are controlled via the RS-485 serial communication protocols S-Bus and Modbus for decentralised automation using industrial quality components. The data point mix is specifically designed for building automation applications. The compact design according to DIN 43880 enables installation in electrical distribution boxes even in the most confined spaces. Installation and maintenance are facilitated by the local manual override for each output. Remote maintenance is also possible by accessing the manual override using the Saia PCD® controller's web interface. Programming is very efficient and fast using a complete FBox library with web templates for S-Bus. Individual programs may directly access the data points via Registers and Flags. Complete documentation is included in this data sheet. #### **Features** - ▶ S-Bus protocol optimized for fast data exchange - ► Modbus protocol for integration in multi-vendor installations* - ▶ Local override operating level via web panel or buttons on the module - ► Specific I/O mix suitable for HVAC systems - ► Easy programming using the FBox library and web templates - ▶ Industrial hardware in accordance with IEC EN 61131-2 - ▶ Pluggable terminal blocks protected by flaps - ► Electrically isolated RS-485 interface **General technical data** #### **Dimensions and installation** # Power supply Supply voltage 24 VDC, -15/+20% max. incl. 5% ripple (in accordance with EN/IEC 61131-2) Electrically isolated 500 VDC between power supply and RS-485 Power consumption 1.2...3 W # Communications interface RS-485 with electrical isolation Baud rate: 9,600, 19,200, 38,400, 57,600, 115,200 bps (Autobauding) Address switch for S-Bus address Two rotary switches 0...9 Address range 0...98 Terminating resistor Integrated, can be activated via a wire jumper #### **General data** Interfaces | Ambient temperature | Operation: | 0+55°C | |---------------------|------------|----------| | | Storage: | -40+70°C | on a 35 mm top-hat rail (in accordance with DIN EN 60715 TH35) 8 ^{*} By default the module is working in S-Bus Data Mode with Autobaud detection. To configure Modbus the Windows-based application "E-LineApp" is required # Input/output configuration #### **Digital inputs** | Number | 24 | | | |---|-------------------------|--|--| | put voltage 24 VDC, source operation (positive switching) | | | | | Switching level | Low: 05 V, High: 1524 V | | | | Input current | Typical 2 mA | | | | Input filter time (DC) | Typical 8 ms | | | # **Relay outputs** | Number | 0 (6 normally open/ 4 changeover) | | | | |------------------------|-----------------------------------|--|--|--| | Switching voltage max. | 250 VAC / 30 VDC | | | | | Switching current max. | 4 A (AC1, DC1) | | | | | Contact protection | None | | | | | Local manual override | Override operation by button | | | | # **Terminal technology** Push-in spring terminals enable wiring with rigid or flexible wires with a diameter up to 1.5 mm². A max. of 1 mm² is permitted with cable end sleeves. #### **Connection concept** The device is supplied by a 24 VDC voltage supply. # **Bus wiring** DB- and /DA+ terminals must be used for exchanging data between modules. The bus is through-wired by using one terminal per bus line in order to not interrupt the bus connection when removing the connector on modules. Flexible RS-485 cables with a cross-section of no more than 0.75 mm² must be used for bus wiring. A total cross-section of 1.5 mm² is allowed per terminal. The communication bus can be terminated with internal terminating resistors using wire bridges. #### **Assignment overview** #### **Connection diagrams** #### **Programming** The modules are addressed and programmed with Saia PG5® Fupla FBoxes. Web templates are available for the operation and visualisation of the manual override function. #### **Fupla** #### **Communication FBox** - ▶ Data exchange for I/O via optimised S-Bus - ► Configurable save state for bus interruption or timeout - ► Direct generation of the symbols - ▶ Reading and writing of the status of the manual override status - ► Direct compatibility with web macros Further information, including which FBoxes are supported, Getting Started, etc., can be found on our support page www.sbc-support.com #### **Web templates** Web templates are available for the operation and visualisation of the manual override function. # Manual operation By using the local override function, commissioning can take place independently of the master station. In addition, the manual operation can also be controlled remotely using a touch panel. If the bus line is cut off, the module keeps the manually set values. Traditional manual operation in the control cabinet door via potentiometers and switches can therefore be completely replaced by this solution. Five operating modes can be selected for the manual operating function: | Operat- | Description | Op | Operation | | | |--------------|--|------------------|---------------------|--|--| | ing
modes | | at the
module | via remote
(com) | | | | 1 | Manual operation deactivated | × | × | | | | 2 | Operation permitted from the module only | ✓ | × | | | | 3 | Operation permitted from the module and limited operation from the panel. If manual operation is activated at the module, it cannot be reset from the panel. | √ | (condi-
tional) | | | | 4 | Unlimited operation from the panel and module | ✓ | ✓ | | | | 5 | Panel operation (remote) | × | ✓ | | | Depending on the application, reset of manually set values is allowed from a panel. To address this requirement, it is possible to deactivate or limit manual operation function. The inputs of the E-Line RIO modules can be addressed via the standard S-Bus. However the FBox from the E-Line library is used for the configuration of these modules. It is therefore recommended to use the optimised S-Bus protocol and the corresponding FBoxes from the E-Line library. Mixed mode operation is not recommended. # E-line App device setup E-Line RIOs support the device setup by a windows application program connected via USB. The installer is available for download from the SBC support page: www.sbc-support.com → E-Line RIO IO Modules. The station number can be set by the rotary switches at the device in the range of $0 \dots 98$. If the rotary switches are set to position 99 the station number can be defined by the device configuration in a range of $0 \dots 253$. The serial communication protocol can be defined either as S-Bus or Modbus. By default the modules are delivered from factory with S-Bus. # RS-485 Bus #### Protocol # **S-Bus settings** The Baudrate can be defined as automatic detection (default) or set to a specific value. The drop down choice will be available when the check box "Automatic" is unchecked. TN delay and TS delay shall be left at their default values of 2. # **Modbus settings** The Baudrate is set by default to 115k. It can be defined as choice of the list. # Baudrate For best interoperability, the Parity Mode and number of Stop Bits can also be set. # Parity #### **S-Bus communication** S-Bus communication is based on Saia PCD® S-Bus Data Mode. Only the set-up of a unique S-Bus address within the communication line is required to establish a communication between Saia PCD® controllers and E-Line RIO modules. The address can be set using the rotary switches at the front of the module. The baud rate will be learned from the network by factory default. In addition a Windows-based application is available for manual parameter setup. Configuration parameters as well as manual override state and value are saved non-volatile. A delay of about one second between a manual state change and non-volatile saving has to be taken into consideration. #### **Device address** ▶ 0...98 Address is taken from the rotary switches ▶ 99 Address is taken from the device configuration. The address is settable with the E-Line configuration software. #### Start-up procedure ► Reboot: All outputs are cleared (Off state) ► <1 sec. Output in manual operation are set according to the state before power down. ► Outputs in automatic mode If, after reboot, no telegram is received within the "safe state power-on timeout," the module enters into the safe state mode and sets the outputs according to their configured values. On reception of a valid command telegram the outputs are controlled by the communication. When no communication update follows within the "safe state com. timeout" the module enters into safe state and sets the outputs according to their configured values. #### **Usage of the E-Line module-specific FBoxes** The usage of the E-Line module-specific FBoxes from the E-Line S-Bus Fupla library allows an easy and efficient commissioning of the E-Line RIO. The FBox allows the definition and configuration of all possible functionalities of the E-Line RIO like manual override permission, usage of safe state mode, behaviour and colour of the LED's and so on. In the background, the FBox uses the fast 'E-Line S-Bus' protocol for a high speed communication between the master and the RIO. #### Direct access to the RIO media with standard S-Bus send and receive telegrams The following chapter describes the media and parameter mapping to Registers and Flags for individual programming. For efficient PCD programming the E-Line RIO FBox family and templates are suitable for most applications. Only individual programming (e.g. Instruction List) requires standard S-Bus communication. #### **Digital inputs** | Input | Input Value | Read/Write | | | |------------------|-------------|------------|--|--| | Digital input 0 | Flag 0 | R | | | | Digital input 1 | Flag 1 | R | | | | | Flag | R | | | | Digital input 23 | Flag 23 | R | | | #### **Relay outputs** | Output | Output Value | Read/Write | Manual override
Communication | Read/Write* | Manual override
Local | Read/Write** | |----------------|--------------|------------|----------------------------------|-------------|--------------------------|--------------| | Relay output 0 | Flag 30 | RW | Register 20 | RW | Register 30 | RW | | Relay output 1 | Flag 31 | RW | Register 21 | RW | Register 31 | RW | | Relay output 2 | Flag 32 | RW | Register 22 | RW | Register 32 | RW | | Relay output 3 | Flag 33 | RW | Register 23 | RW | Register 33 | RW | | Relay output 4 | Flag 34 | RW | Register 24 | RW | Register 34 | RW | | Relay output 5 | Flag 35 | RW | Register 25 | RW | Register 35 | RW | | Relay output 6 | Flag 36 | RW | Register 26 | RW | Register 36 | RW | | Relay output 7 | Flag 37 | RW | Register 27 | RW | Register 37 | RW | | Relay output 8 | Flag 38 | RW | Register 28 | RW | Register 38 | RW | | Relay output 9 | Flag 39 | RW | Register 29 | RW | Register 39 | RW | ^{*} Writable only if S-Bus permission is set in the configuration, otherwise write has no effect Normal operation: The outputs are set according the flag set by the communication. Manual operation: The output are set according to the manual command, the communication flags are ignored. Safe State: In case of a broken communication, a safe state value can be applied, see table Safe State Configuration. #### Register format for manual override via S-Bus (Reg. 20 ... 29): Bit 0 Current output value Bit 30 1: output is driven in manual override by S-Bus Bit 31 1: output is driven in manual override by local push buttons #### Register format for local manual override (Reg. 30 ... 39): Bit 0 Current output value Bit 31 1: output is driven in manual override by local push buttons ^{**}Writing to these registers has no effect. Used only if hardware permission is set in the configuration # **S-Bus communication** #### Configuration for safe state and manual override | Output | Safe State Enable | Read/Write | Safe State Value | Read/Write | |---|---|--------------|------------------|------------| | Relay output 0 | Flag 320 | RW | Flag 350 | RW | | Relay output 1 | Flag 321 | RW | Flag 351 | RW | | Relay output 2 | Flag 322 | RW | Flag 352 | RW | | Relay output 3 | Flag 323 | RW | Flag 353 | RW | | Relay output 4 | Flag 324 | RW | Flag 354 | RW | | Relay output 5 | Flag 325 | RW | Flag 355 | RW | | Relay output 6 | Flag 326 | RW | Flag 356 | RW | | Relay output 7 | Flag 327 | RW | Flag 357 | RW | | Relay output 8 | Flag 328 | RW | Flag 358 | RW | | Relay output 9 | Flag 329 | RW | Flag 359 | RW | | Communication safe state enabl | e default 0 (disabled) | | Flag 400 | RW | | Communication safe state time
Valid values 1000 100,000,00 | | | Register 590 | RW | | Manual operation mode Bit 0: Disabled Bit 1: Remote control li Bit 2: Local operation e Bit 3: Remote control u Bits can be combined to enable! | nabled, default 1
nlimited*, default 0 | Register 592 | RW | | ^{*} If manual operation is locally activated at the module, the output value and manual state cannot be set/reset remotely #### Manual operation mode: - ▶ Disabled (0) - ► Local operation only (4, Bit 2 set) - ▶ Local operation enabled, remote limited (6, Bit 1 and 2 set), default - ▶ Local and remote operation enabled (12, Bit 2 and 3 set) - ► Remote operation only, local operation disabled (8, Bit 3 set) The safe state enable flag and the safe state value are combined in the following way: - Setting the enable flag to 0 keep the output value unchanged in case of safe state occurrence. - Setting the enable flag to 1 writes the safe state value in case of safe state occurrence. #### **Device Information** | Firmware version (Decimal xyyzz, 10802 → 1.08.02) | Register 600 | R | |--|------------------|---| | Number of supported registers | Register 601 | R | | Number of supported flags | Register 602 | R | | Product type (ASCII String)*** | Register 605 608 | R | | Hardware version (Hex) | Register 609 | R | | Serial number (Hex) | Register 611 612 | R | | Communication protocol (1:S-Bus Slave, 3:Modbus) | Register 620 | R | | Communication baud rate | Register 621 | R | | Communication auto baud enable (0:disabled, 1:enabled) | Register 622 | R | | Communication TN delay * | Register 623 | R | | Communication TS delay ** | Register 624 | R | | Communication module address | Register 626 | R | ^{**} Time in 0.1 ms (e.g. 2 means 200 us) before setting activation of RS-485 line driver send mode (only used for S-Bus slave protocol) ** Time in 0.1 ms (e.g. 2 means 200 us) before sending the first character after line driver activation (only used for S-Bus slave protocol) *** The four registers contain the ASCII characters of the product type. E.g. for PCD1 A2000-A20: 0605: 50434431H 0606: 2E413230H 0607: 30302D4H 0608: 32300000H #### **Modbus communication** Modbus fulfils the requirements for standard communication protocols. It is based on Modbus RTU. The Windows-based configuration software is required to enable and set up the Modbus communication parameters. The device address can be set up with the rotary switches at the front of the module. Configuration parameters as well as manual override state and value are saved non-volatile. A delay of about one second between a manual state change and non-volatile saving has to be taken into consideration. #### **Device address** ▶ 0...98 Address is taken from the rotary switches ▶ 99 Address is taken from the device configuration. The address is settable with the E-Line configuration #### Start-up procedure ► Reboot: All outputs are cleared (Off state) <1 sec. Output in manual operation are set according to the state before power down.</p> ► Outputs in automatic mode If, after reboot, no telegram is received within the "safe state power-on timeout," the module enters into the safe state mode and sets the outputs according to their configured values. On reception of a valid command telegram the outputs are controlled by the communication. When no communication update follows within the "safe state com. timeout" the module enters into safe state and sets the outputs according to their configured values. The following chapter describes the media and parameter mapping to Registers and Flags (=Coils). #### **Supported Modbus services:** - ► Function code 1 (read coils) - ► Function code 3 (read registers) - ► Function code 15 (write multiple coils) - ► Function code 16 (write multiple registers) # **Read coils** | Request | | | | | | | | |---------|----------|---------------|----------|-------------------------|----------|-----------|----------| | Address | Function | Start Address | | Number of coils to read | | CRC | | | 0 254 | 1 | High-Byte | Low-Byte | High-Byte | Low-Byte | High-Byte | Low-Byte | | F | Reply | | | | | | | | |---|---------|----------|-------------|----------|-----------|-----|-----------|----------| | | Address | Function | No. of Byte | Data | | | CF | RC | | | 0254 | 1 | 0 256 | Coil 0 7 | Coil 8 15 | ••• | High-Byte | Low-Byte | # **Write coils** | Request | | | | | | | | | | | |---------|----------|-----------|----------|-------------|----------------|----------------|----------|-----|-----------|----------| | Address | Function | Start A | ddress | Number of 0 | Coils to write | rite Coil data | | CRC | | | | 0254 | 15 | High-Byte | Low-Byte | High-Byte | Low-Byte | No. of Bytes | Coil 0 7 | ••• | High-Byte | Low-Byte | | Reply | | | | | | | | | |---------|----------|---------------|----------|-------------|---------------|-----------|----------|--| | Address | Function | Start Address | | Number of v | vritten Coils | CRC | | | | 0254 | 15 | High-Byte | Low-Byte | High-Byte | Low-Byte | High-Byte | Low-Byte | | # **Read register** | Request | | | | | | | | | |---------|----------|---------------|----------|-------------------------|----------|-----------|----------|--| | Address | Function | Start Address | | No. of Register to read | | CRC | | | | 0254 | 3 | High-Byte | Low-Byte | High-Byte | Low-Byte | High-Byte | Low-Byte | | | Reply | | | | | | | | | |---------|----------|-------------|-------------------------|----------|----------|-----------|----------|--| | Address | Function | No. of Byte | Register Start Addr + 0 | | Addr + n | CF | RC | | | 0254 | 3 | 0 256 | High-Byte | Low-Byte | | High-Byte | Low-Byte | | # Write register | Request | | | | | | | | | | | | |---------|----------|-----------|----------|---|----------|----------|----------|-----------|-----|-----------|----------| | Address | Function | Start A | ddress | No. of Registers No. of Bytes Data Word: Start Addr + 0 | | Addr + n | CF | C . | | | | | 0254 | 16 | High-Byte | Low-Byte | High-Byte | Low-Byte | 2 256 | Low-Byte | High-Byte | ••• | High-Byte | Low-Byte | | Reply | | | | | | | | | | |-------|---------|--------------------------------|-----------|-------------------------|-----------|----------|-----------|----------|--| | | Address | Address Function Start Address | | No of written Registers | | CRC | | | | | Ī | 0254 | 16 | High-Byte | Low-Byte | High-Byte | Low-Byte | High-Byte | Low-Byte | | The CRC has to be calculated over all telegram bytes starting with address field up to the last data byte. The CRC has to be attached to the data. Please find an example at the appendix of this document. For more details, please refer the publicly available Modbus documentation www.modbus.org. ### **Modbus communication** #### **Digital inputs** | Input | Input Value | Read/Write | |------------------|-------------|------------| | Digital input 0 | Coil 0 | R | | Digital input 1 | Coil 1 | R | | | Coil | R | | Digital input 23 | Coil 23 | R | #### **Relay outputs Digital outputs** | Output | Output Value | Read/Write | Manual override
Communication | Read/Write* | Manual override
Local | Read/Write** | |----------------|--------------|------------|----------------------------------|-------------|---------------------------------|--------------| | Relay output 0 | Coil 30 | RW | Value Reg. 40
Enable Reg. 41 | RW | Value Reg. 60
Enable Reg. 61 | RW | | Relay output 1 | Coil 31 | RW | Value Reg. 42
Enable Reg. 43 | RW | Value Reg. 62
Enable Reg. 63 | RW | | Relay output 2 | Coil 32 | RW | Value Reg. 44
Enable Reg. 45 | RW | Value Reg. 64
Enable Reg. 65 | RW | | Relay output 3 | Coil 33 | RW | Value Reg. 46
Enable Reg. 47 | RW | Value Reg. 66
Enable Reg. 67 | RW | | Relay output 4 | Coil 34 | RW | Value Reg. 48
Enable Reg. 49 | RW | Value Reg. 68
Enable Reg. 69 | RW | | Relay output 5 | Coil 35 | RW | Value Reg. 50
Enable Reg. 51 | RW | Value Reg. 70
Enable Reg. 71 | RW | | Relay output 6 | Coil 36 | RW | Value Reg. 52
Enable Reg. 53 | RW | Value Reg. 72
Enable Reg. 73 | RW | | Relay output 7 | Coil 37 | RW | Value Reg. 54
Enable Reg. 55 | RW | Value Reg. 74
Enable Reg. 75 | RW | | Relay output 8 | Coil 38 | RW | Value Reg. 56
Enable Reg. 57 | RW | Value Reg. 76
Enable Reg. 77 | RW | | Relay output 9 | Coil 39 | RW | Value Reg. 58
Enable Reg. 59 | RW | Value Reg. 78
Enable Reg. 79 | RW | ^{*} Writable only if Modbus permission is set in the configuration, otherwise write has no effect Normal operation: The outputs are set according the flag set by the communication. Manual operation: The output are set according to the manual command, the communication flags are ignored. Safe State: In case of a broken communication, a safe state value can be applied, see table Safe State Configuration. # Register format for manual override via Modbus (Reg. 40 ... 59): Bit 0 Current output value Enable Reg. Bit 14 1: output is driven in manual override by Modbus Enable Reg. Bit 15 1: output is driven in manual override by local push buttons #### Register format for local manual override (Reg. 60 ... 79): Value Reg. Bit 0 Current output value Enable Reg. Bit 15 1: output is driven in manual override by local push buttons ^{**}Writing to these registers has no effect. Used only if hardware permission is set in the configuration #### Configuration for safe state and manual override | Output | Safe State Enable | Read/Write | Safe State Value | Read/Write | |--|---|---------------|------------------|------------| | Relay output 0 | Coil 320 | RW | Coil 350 | RW | | Relay output 1 | Coil 321 | RW | Coil 351 | RW | | Relay output 2 | lay output 2 Coil 322 RW | | Coil 352 | RW | | Relay output 3 | lay output 3 Coil 323 RW | | Coil 353 | RW | | Relay output 4 | Coil 324 | RW | Coil 354 | RW | | Relay output 5 | Coil 325 | RW | Coil 355 | RW | | Relay output 6 | Coil 326 | RW | Coil 356 | RW | | Relay output 7 | Coil 327 | RW | Coil 357 | RW | | Relay output 8 | Coil 328 | RW | Coil 358 | RW | | Relay output 9 | Coil 329 | RW | Coil 359 | RW | | Communication safe state enabl | e default 0 (disabled) | | Coil 400 | RW | | Communication safe state timeo
Valid values 1000 100,000,000 | | | Reg. 1180, 1181 | RW | | Manual operation mode Bit 0: Disabled Bit 1: Remote control li Bit 2: Local operation e Bit 3: Remote control u Bits can be combined to enable | nabled, default 1
nlimited*, default 0 | Register 1184 | RW | | $^{^{*}\ \ \}text{If manual operation is locally activated at the module, the output value and manual state cannot be set/reset remotely}$ # Manual operation mode: - ▶ Disabled (0) - ► Local operation only (4, Bit 2 set) - ▶ Local operation enabled, remote limited (6, Bit 1 and 2 set), default - ▶ Local and remote operation enabled (12, Bit 2 and 3 set) - ► Remote operation only, local operation disabled (8, Bit 3 set) The safe state enable flag and the safe state value are combined in the following way: - Setting the enable coil to 0 keep the output value unchanged in case of safe state occurrence. - Setting the enable coil to 1 writes the safe state value in case of safe state occurrence. #### **Device Information** | Firmware version (Decimal xyyzz, 10802 → 1.08.02) | Register 1200 | R | |--|--------------------|---| | Number of supported registers | Register 1202 | R | | Number of supported flags | Register 1204 | R | | Product type (ASCII String)* | Register 1210 1217 | R | | Hardware version (Hex) | Register 1218 | R | | Serial number (Hex) | Register 1222 1224 | R | | Communication protocol (1: S-Bus Slave, 3: Modbus) | Register 1240 | R | | Communication baud rate | Register 1242 | R | | Communication auto baud enable (0:disabled, 1:enabled) | Register 1244 | R | | Communication Mode
0: 8,E,1; 1: 8,O,1; 2: 8,N,2; 3: 8,N,1 | Register 1250 | R | | Communication module address | Register 1252 | R | ^{*} The eight registers contain the ASCII characters of the product type. E.g. for PCD1.A2000-A20: 1210...1217: 5043H | 4431H | 2E41H | 3230H | 3030H | 2D41H | 3230H | 0000H #### **CRC Generation Example** (Source: http://modbus.org/docs/PI_MBUS_300.pdf, the following content of this page is copied from the referenced document. In case of any questions, please check out the original source) The function takes two arguments: unsigned char *puchMsg; A pointer to the message buffer containing binary data to be used for generating the CRC unsigned short usDataLen; The quantity of bytes in the message buffer. The function returns the CRC as a type unsigned short. #### **CRC Generation Function** ``` unsigned short CRC16(puchMsg, usDataLen); unsigned char *puchMsg : /* message to calculate CRC upon */ /* quantity of bytes in message */ unsigned short usDataLen; { unsigned char uchCRCHi = 0xFF; /* high byte of CRC initialized */ /* low byte of CRC initialized */ unsigned char uchCRCLo = 0xFF; unsigned uIndex ; /* will index into CRC lookup table */ while (usDataLen--) /* pass through message buffer */ uIndex = uchCRCHi ^ *puchMsgg++; /* calculate the CRC */ uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex]; uchCRCLo = auchCRCLo[uIndex]; return (uchCRCHi << 8 | uchCRCLo); High-Order Byte Table /* Table of CRC values for high-order byte */ static unsigned char auchCRCHi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0xC1, 0x81, 0x40, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0 \times 00, \ 0 \times C1, \ 0 \times 81, \ 0 \times 40, \ 0 \times 01, \ 0 \times C0, \ 0 \times 80, \ 0 \times 41, \ 0 \times C0, \ 0 \times 80, \ 0 \times 41, \ 0 \times 00, \ 0 \times C1, \ 0 \times 81, \ 0 \times 40, \ 0 \times C1, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40); Low-Order Byte Table /* Table of CRC values for low-order byte */ static char auchCRCLo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xCB, 0x0B, 0xCB, 0x08, 0x18, 0x19, 0x09, 0x18, 0x08, 0x0A, 0x1A, 0x1E, 0x0E, 0x0F, 0x1F, 0x0D, 0x1D, 0x1C, 0x0C, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x15, 0xD6, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x3B, 0xFB, 0x3B, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xAB, 0x68, 0x78, 0x88, 0x89, 0x79, 0x88, 0x78, 0x78, 0x88, 0x8E, 0x7E, 0x8F, 0x7E, 0x8D, 0x8C, 0x7C, 0x84, 0x74, 0x75, 0x85, 0x77, 0x87, 0x86, 0x76, 0x72, 0x82, 0x83, 0x73, 0x81, 0x71, 0x70, 0x80, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x9A, 0x9B, 0x5B, 0x5B, 0x5B, 0x5B, 0x9B, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40); ``` # NOTE Extra low voltages (ELV) or secure low voltages (SELV) are voltages up to 50 Volts. # NOTE Low voltages are voltages between 50 ... 250 Volts. # **INSTALLATION DIRECTION FOR SWITCHING LOWER VOLTAGES** For reasons of safety it is not allowed that extra low voltages and low voltages are connected to two adjacent relay contacts. Neither different phases may be connected to two adjacent relay contacts. But a relay contact between them can be left empty. If a Saia PCD® system module is connected to low voltage, then all components which are electrically connected to this system must be approved for low voltage. When using low voltage, all connections to the relay contacts, which are connected to the same circuit, must be protected by a common fuse. The individual load circuits, on the other hand, may be protected individually by a fuse. # Wiring example with fuses and 3 phases # **ATTENTION** These devices must only be installed by a professional electrician, otherwise there is the risk of fire or the risk of an electric shock. #### **WARNING** Product is not intended to be used in safety critical applications, using it in safety critical applications is # **WARNING - Safety** Check compliance with nominal voltage before commissioning the device (see type label). Check that connection cables are free from damage and that, when wiring up the device, they are not connected to voltage. #### **NOTE** In order to avoid moisture in the device due to condensate build-up, acclimatise the device at room temperature for about half an hour before connecting. #### **CLEANING** The device can be cleaned in dead state with a dry cloth or cloth soaked in soap solution. Do not use caustic or solvent-containing substances for cleaning. #### **MAINTENANCE** These devices are maintenance-free. If damaged during transportation or storage, no repairs should be undertaken by the user. #### **GUARANTEE** Opening the module invalidates the guarantee. # WEEE Directive 2012/19/EC Waste Electrical and Electronic Equipment directive The product should not be disposed of with other household waste. Check for the nearest authorized collection centers or authorized recyclers. The correct disposal of end-of-life equipment will help prevent potential negative consequences for the environment and human health. PCD1.K0206-005 PCD1.K0206-025 Terminal set 32304321-003-S # **Order details** | Туре | Short description | Description | Weight | |----------------|---|---|--------| | PCD1.B1010-A20 | E-Line RIO 24DI, 10Rel | E-Line digital input/output module Manual priority operating level for all outputs Status LED for inputs and outputs Supply 24 VDC 24 digital inputs; 24 VDC (source operation) 6 relay normally open 250 VAC / 30 VDC, 4 A (DC1) 4 relay changeover 250 VAC / 30 VDC, 4 A (DC1) 1 interface RS-485 (S-Bus) | 385 g | | PCD1.K0206-005 | E-Line labelling set 5 × 6 HP* | E-Line cover and labelling set consisting of $5 \times$ covers (6 HP = 105 mm) and labelling sheet for mounting in the automation control cabinet | 365 g | | PCD1.K0206-025 | E-Line labelling set 5 × 6 HP* with holes | E-Line cover and labelling set with holes consisting of $5 \times$ covers (6 HP = 105 mm) with holes for manual override operating level and labelling sheet for mounting in the automation control cabinet | 365 g | | 32304321-003-S | Terminal set | 6-pin terminal. Set of 6 terminal blocks | 40 g | ^{*} Horizontal pitch: 1 HP corresponds to 17.5 mm # Saia-Burgess Controls AG Bahnhofstrasse 18 | 3280 Murten, Switzerland T +41 26 580 30 00 | F +41 26 580 34 99 www.saia-pcd.com